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a b s t r a c t

Simulations were carried out using penalty finite element analysis with bi-quadratic elements to inves-
tigate the influence of uniform and non-uniform heating of bottom wall within a trapezoidal enclosure of
various inclination angles ðuÞ. Parametric study has been carried out for a wide range of Rayleigh number
ðRaÞ ð103

6 Ra 6 106Þ, Prandtl number ðPrÞ ð0:026 6 Pr 6 988:24Þ and Darcy number ðDaÞ ð10�3
6

Da 6 10�5Þ. Numerical results are presented in terms of stream functions, isotherm contours and Nusselt
numbers. The heat transfer is primarily due to conduction at lower values of Darcy number ðDaÞ and con-
vection dominant heat transfer is observed at higher Da values. The intensity of circulation increases with
increase in Darcy number. Increase in the intensity of circulations and larger temperature gradient are
also observed with increase in u from 0� to 45� especially at larger Pr and Ra. Non-uniform heating of
the bottom wall produces greater heat transfer rate at the center of the bottom wall than uniform heating
at all Rayleigh and Darcy numbers, but average Nusselt number is lower for non-uniform heating. Local
heat transfer rates are found to be relatively greater for u ¼ 0�. It is observed that the local heat transfer
rate at the central portion of bottom wall is larger for non-uniform heating case. Average Nusselt number
plots show higher heat transfer rates at the bottom wall for u ¼ 0� as compared to u ¼ 45� and u ¼ 30�.
It is observed that the average heat transfer rate at the bottom wall is found to be invariant with respect
to u at higher Ra for non-uniform heating. Critical Rayleigh numbers for conduction dominant heat
transfer cases have been obtained and the power law correlations between average Nusselt number
and Rayleigh numbers are presented for convection dominated regimes.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The convective motion driven by buoyancy forces is well-
known natural phenomena, and has attracted much attention
[1–11]. The phenomena of natural convection in enclosures can
be classified into two main groups – rectangular enclosures and
non-rectangular enclosures. However, the number of studies on
natural convection in porous non-rectangular geometries is very
limited. In this context, buoyancy driven phenomena in porous
media are actively under investigation. Natural convection flows
are however particularly complex as they depend on several
parameters among which the geometry and thermophysical char-
acteristics of the fluid are the most important. Also, various appli-
cations depend on the product specification, shape of the container
and heating characteristics. Numerical modeling offers a way to re-
duce expensive experiments. Most of the earlier modeling studies
ll rights reserved.

x: +91 0442257 0509.
, sjroy@iitm.ac.in (S. Roy),
were carried out with conductive heating because of the simplicity
of analytical and numerical solutions.

A significant amount of literature is available on the convection
patterns in enclosures filled with porous media [12–15]. Natural
convection in an enclosure filled with two layers of porous media
was investigated numerically by Merrikh and Mohamad [16]. The
focus of this work is on the validity of the Darcy model. Tong
and Subramanian [17] and Lauriat and Prasad [18] considered
Brinkman-extended Darcy model to examine the buoyancy effects
on free convection in a vertical cavity. Brinkman-extended Darcy
model has been introduced by Brinkman [19] in order to account
for the transition from Darcy flow to highly viscous flow at high
permeability values. However, Brinkman-extended Darcy model
does not provide adequate description for the transition from the
porous medium flow to pure fluid flow. A model that bridges the
gap between the Darcy and Navier–Stokes equations is the
Darcy–Forchheimer model developed by Vafai and Tien [20]. In
addition, Darcy–Forchheimer model also describes the effect of
inertia and viscous forces in the porous media and was used
by Poulikakos and Bejan [21] and Lauriat and Prasad [22] to
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Nomenclature

Da Darcy number
g acceleration due to gravity, m s�2

k thermal conductivity, W m�1 K�1

H length/height of the trapezoidal cavity, m
N total number of nodes
Nu local Nusselt number
p pressure, Pa
P dimensionless pressure
Pr Prandtl number
R Residual of weak form
Ra Rayleigh number
T temperature, K
Th temperature of hot bottom wall, K
Tc temperature of cold inclined wall, K
u x component of velocity
U x component of dimensionless velocity
v y component of velocity
V y component of dimensionless velocity
X dimensionless distance along x coordinate
Y dimensionless distance along y coordinate

Greek symbols
a thermal diffusivity, m2 s�1

b volume expansion coefficient, K�1

c penalty parameter
h dimensionless temperature
m kinematic viscosity, m2 s�1

q density, kg m�3

U basis functions
w stream function
n horizontal coordinate in a unit square
g vertical coordinate in a unit square
u angle of inclination of side walls

Subscripts
b bottom wall
l left wall
r right wall
s side wall
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investigate the natural convection in a vertical enclosure filled
with a porous medium.

A few earlier works have been carried out on natural convection
in complex porous geometries. Bortolozzi and Deiber [23] studied
the two-field model for natural convection in porous media in rela-
tion to the one-field model, based on the assumption of local ther-
mal equilibrium. These models are used to evaluate heat transfer
through a porous medium of relatively high permeability contained
in a vertical annulus. Numerical calculations are carried out for var-
iable porosity and various correlations for the heat transfer coeffi-
cient between solid and fluid phases are analyzed. Badruddin
et al. [24] have studied the steady state heat transfer in a porous
medium fixed in a vertical annular cylinder. The Darcy model of
flow was employed and heat transfer was assumed to take place
by natural convection and radiation. The governing equations were
solved using the finite element method. They found that if inter-
phase heat transfer coefficient and modified conductivity ratio are
maintained at high values, then thermal equilibrium is approached
with both solid and fluid phases having similar temperatures.

A few recent works are also based on various complex situa-
tions in porous medium [25–27]. The effect of viscous dissipation
has been considered for Darcy model by Saeid and Pop [25]. Their
studies show that the viscous dissipation effect reduces the heat
transfer rate and the average Nusselt number in porous cavity de-
creases with the increase of the viscous dissipation parameter. Re-
cently, Basak et al. [26] studied numerically the natural convection
flows in a square cavity filled with a porous matrix for various
boundary conditions and wide range of parameters. Results
showed that non-uniform heating of the bottom wall produces
greater heat transfer rate at the center of the bottom wall than uni-
form heating case for all Ra, but average Nu shows overall lower
heat transfer rates for non-uniform heating case.

Baytas and Pop [27] have studied natural convection on trape-
zoidal porous enclosure with situations such as top enclosure
being cooled, bottom surface being heated and the remaining
two non-parallel plane sidewalls of the enclosure being adiabatic.
Although their study deals with heat transfer analysis on various
application in trapezoidal porous spaces, a comprehensive analysis
on heat transfer and flow circulations for applications on extrac-
tion of molten metals, salt water and olive oil confined within a
porous bed is yet to appear in literature for various tilt angles.
The objective of the present study is to investigate the circula-
tion and temperature distributions in various enclosures (trapezoi-
dal or square) with uniformly and non-uniformly heated bottom
plate and cooled side walls. The effect of geometry has been illus-
trated for various angle of the sidewall varying within 0–45�. The
analysis has been carried out for various materials with a range
of Prandtl number ðPrÞ, e.g., molten metals ðPr ¼ 0:004—0:026Þ,
gases ðPr ¼ 0:7—1Þ, salt water ðPr ¼ 1:7—13:7Þ, oils ðPr ¼
50—103Þ, etc. whereas earlier literature primarily involve air and
water only. The thermal processing of various materials within a
porous enclosure is quite important especially for separation or
extraction purposes. The motivation of this study is to analyze
the practical situation where the vertical wall is at ambient tem-
peratures and inside temperature is maintained high using any
heating system, while the top wall is insulated. The boundary con-
ditions due to uniform heating correspond to jump discontinuities
at corner points and similar boundary conditions were also used in
earlier works on natural convection in square cavities [5,26]. The
boundary condition due to non-uniform heating has been repre-
sented by sinusoidal distribution of temperature and this type of
boundary condition is particularly useful for processing molten
glass [28].

The geometry of the trapezoidal enclosure with boundary con-
ditions is shown in Fig. 1a–c. In the current study, the Galerkin fi-
nite element method is used with penalty parameter to solve the
non-linear coupled partial differential equations governing flow
and temperature fields for both uniform and non-uniform heating
of the bottom wall. The Darcy–Forchheimer model without the
Forchheimer’s inertia term has been adopted. The jump disconti-
nuities in Dirichlet type of wall boundary conditions at the corner
points correspond to computational singularities. In particular, the
singularities at the bottom corner nodes need special attention.
Non-orthogonal grid generation has been done with iso-paramet-
ric mapping [29,30]. An overview on grid generation using
iso-parametric mapping is given in Appendix A. The Galerkin finite
element with iso-parametric mapping has been used based on the
fact that automatically generated grid in a pseudo-square domain
makes the method robust for any complex geometry. Numerical
results are obtained to describe the circulation and temperature
distributions within the domain and the heat transfer rate for both
the walls in terms of local and average Nusselt numbers. Local and
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Fig. 1. Schematic diagram of the physical system for (a) u ¼ 45� , (b) u ¼ 30� and
(c) u ¼ 0� .
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average Nusselt numbers have been evaluated using bi-quadratic
basis functions. The heat transfer effects have been illustrated
based on two cases: uniformly heated bottom wall and non-uni-
formly heated bottom wall.

2. Mathematical formulation

Consider a trapezoidal cavity, filled with a porous medium, with
the left wall inclined at an angle u ¼ 45�;30� and 0� with the y-axis
as seen in Fig. 1a, b and c, respectively. Thermophysical properties
of the fluid in the flow field are assumed to be constant except the
density variations causing a body force term in the momentum
equation. The Boussinesq approximation is invoked the variation
of fluid density with temperature and to couple in this way the
temperature field to the flow field. Further, it is assumed that the
temperature of the fluid phase is equal to the temperature of the
solid phase everywhere in the porous region and local thermal
equilibrium (LTE) is applicable in the present investigation [13].
Also, a velocity square term could be incorporated in the momen-
tum equations to model the inertia effect which is more important
for non-Darcy convective boundary layer flow over the surface of a
body embedded in a high porosity media. However, this term has
been neglected in the present study because this study involves
the natural convection flow in a cavity filled with a porous med-
ium. Under these assumptions and following the earlier works
[20,4] with the Forchheimer’s inertia term being neglected, the
governing equations for steady two-dimensional natural convec-
tion flow in the porous cavity using conservation of mass, momen-
tum and energy in dimensionless form can be written as:
@U
@X
þ @V
@Y
¼ 0 ð1Þ

U
@U
@X
þ V

@U
@Y
¼ � @P

@X
þ Pr

@2U
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 !
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U
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where

X ¼ x
H
; Y ¼ y

H
; U ¼ uH

a
; V ¼ vH

a
; h ¼ T � Tc

Th � Tc

P ¼ pH2

qa2 ; Pr ¼ m
a
; Da ¼ K

H2 ; Ra ¼ gbðTh � TcÞH3

ma
ð5Þ

The dimensionless form of the boundary conditions are:

U¼0; V ¼0; h¼1; or h¼ sinðpXÞ;8Y ¼0; 06X61
U¼0; V ¼0; h¼0; 8XcosðuÞþYsinðuÞ¼0;06Y 61
U¼0; V ¼0; h¼0; 8XcosðuÞ�YsinðuÞ¼ cosðuÞ;06Y 61

U¼0; V ¼0;
@h
@Y
¼0; 8Y ¼1;�tanðuÞ6X61þ tanðuÞ: ð6Þ
3. Solution procedure

The momentum and energy balance equations (Eqs. (2)–(4))
are solved using the Galerkin finite element method. The continu-
ity equation (Eq. (1)) is used as a constraint due to mass conser-
vation and this constraint may be used to obtain the pressure
distribution. In order to solve Eqs. (2) and (3), the penalty finite
element method is used where the pressure P is eliminated by
a penalty parameter c and the incompressibility criteria given
by Eq. (1) results in

P ¼ �c
@U
@X
þ @V
@Y

� �
ð7Þ

The continuity equation (Eq. (1)) is automatically satisfied for
large values of c. Typical values of c that yield consistent solutions
are 107. Using Eq. (7), the momentum balance equations (Eqs. (2)
and (3)) reduce to

U
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þ Pr
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 !
� Pr

Da
V

þ RaPrh ð9Þ

The system of equations (Eqs. (4), (8) and (9)) with boundary
conditions (Eq. (6)) are solved using Galerkin finite element meth-
od [29]. Since the solution procedure is explained in an earlier
work [26], the detailed description is not included in this paper.
The numerical solutions are obtained in terms of the velocity com-
ponents ðU; VÞ and stream function ðwÞ is evaluated using the rela-
tionship between the stream function ðwÞ and the velocity
components [31], where the stream function ðwÞ is defined in the
usual way as U ¼ @w

@Y and V ¼ � @w
@X. It may be noted that, the positive

sign of w denotes anti-clockwise circulation and the clockwise cir-
culation is represented by the negative sign of w. The no-slip con-
dition is valid at all boundaries as there is no cross flow, hence
w ¼ 0 at the boundaries. For steady flow, stream lines are equiva-
lent to the paths followed by the individual particles in the fluid.
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The heat transfer coefficient in terms of the local Nusselt num-
ber ðNuÞ is defined by

Nu ¼ � @h
@n

ð10Þ

where n denotes the normal direction on a plane. The local Nusselt
numbers at bottom wall ðNubÞ, left wall ðNulÞ and right wall ðNurÞ
are defined as

Nub ¼
X9

i¼1

hi
@Ui

@Y
ð11Þ

Nul ¼
X9

i¼1

hi cosu
@Ui

@X
þ sinu

@Ui

@Y

� �
ð12Þ

and
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X9

i¼1

hi cosu
@Ui

@X
� sinu

@Ui

@Y

� �
ð13Þ

The average Nusselt numbers at the bottom, left and right walls are

Nub ¼
R 1

0 NubdX

Xj10
¼
Z 1

0
NubdX ð14Þ

Nul ¼ cosu
Z 1

cosu

0
Nulds1 ð15Þ

and

Nur ¼ cosu
Z 1

cosu

0
Nurds2 ð16Þ

where ds1;ds2 is the small elemental lengths along the left and right
walls, respectively.

4. Results and discussion

4.1. Numerical tests

The grid generation has been carried out by iso-parametric
mapping and the detailed explanation is given in Appendix A.
The computational domain consists of 20� 20 bi-quadratic ele-
ments which correspond to 41� 41 grid points in n—g domain as
seen in Fig. 2. The bi-quadratic elements with lesser number of
nodes smoothly capture the non-linear variations of the field vari-
ables which are in contrast with finite difference solutions avail-
able in the literature [27]. In order to assess the accuracy of the
numerical procedure, the algorithm has been benchmarked based
on the grid size for the fluid filled trapezoidal cavity [32]. Further,
the result is in agreement with an earlier work [22] for porous
square enclosure with heated side wall.

Numerical solutions are obtained for Ra ¼ 103—106; Pr ¼
0:026—988:24 and Da ¼ 10�5—10�3 with uniform and non-uni-
form heating of the bottom wall where two vertical walls are
cooled and the top wall is well insulated. The jump discontinuity
in Dirichlet type of boundary conditions at the corner point on
the bottom wall (see Fig. 1) corresponds to computational singu-
larity. To ensure the convergence of the numerical solution to the
exact solution, the grid sizes have been optimized and the results
presented here are independent of grid sizes. In particular, the sin-
gularity at the corner nodes of the bottom wall needs special atten-
tion. The grid size dependent effect of the temperature
discontinuity at the corner points on the local (and the overall)
Nusselt numbers tend to increase as the mesh spacing at the corner
is reduced. One of the ways for handling the problem is assuming
the average temperature of the two walls at the corner and keeping
the adjacent grid-nodes at the respective wall temperatures. How-
ever, according to earlier work by Ganzarolli and Milanez [33], this
procedure is still grid dependent unless a sufficiently refined mesh
is implemented. Hence, once any corner formed by the intersection
of two differently heated boundary walls is assumed at the average
temperature of the adjacent walls, the optimal grid size obtained
for each configuration corresponds to the mesh spacing over which
further grid refinements lead to grid invariant results in both heat
transfer rates and flow fields.

In the current investigation, Gaussian quadrature based finite
element method provides the smooth solutions at the interior do-
main including the corner regions as evaluation of residuals de-
pends on interior Gauss points and thus the effect of corner
nodes is less pronounced in the final solution. The present finite
element approach offers special advantages on evaluation of local
Nusselt number at the bottom and side walls as the element basis
functions are used to evaluate the heat flux.

4.2. Effects of Darcy number: uniform heating at bottom wall

Figs. 3–7 illustrate the stream function and isotherm contours
for various Ra ¼ 103—106;Da ¼ 10�5—10�3 and Pr ¼ 0:026
(molten metal), 7.2 (salt water) and 988.24 (olive oil) when
the bottom wall is uniformly heated and the side walls are
cooled while the top wall is well insulated. Due to the hot bot-
tom wall, the fluid near that wall is hotter than the fluid near
the cold wall and hence fluid near the hot bottom wall have
lower density than that near the vertical wall. As a result, fluid
moves upward from the middle portion of the bottom wall
and flows down along the two cold side walls resulting in oppo-
sitely rotating circulations inside the cavity. Results indicate that
the streamlines and isotherms are strongly dependent on Darcy
number.

Fig. 3 displays the temperature and stream function contours
for Da ¼ 10�5 and Ra ¼ 106 with Pr ¼ 7:2. In this case, the flow is
seen to be very weak as observed from the stream function con-
tours. The temperature contours are smooth and monotonic and
this indicates that heat transfer is primarily due to conduction. Iso-
therms with h ¼ 0:1—0:4 occur symmetrically near the side walls
of the enclosure for u ¼ 45� (Fig. 3a). The other temperature con-
tours with h P 0:5 are smooth curves symmetric with respect to
vertical symmetrical line at the center. For u ¼ 30�, the isotherms
with h ¼ 0:1—0:3 occur symmetrically near the side walls of the



0.5

0.7

0.9

0.3

0.
2

0.1

0.
1

0.2 0.
3

(a)
TEMPERATURE, θ

0.05 −0.05

0.25 −0.25
0.34 −0.34

0.12 −0.12

STREAM FUNCTION, ψ

0.4

0.6

0.8

0.2 0.
2

(b) 0.05 −0.05

0.25 −0.25
0.32 −0.32

0.12 −0.12

0.2

0.4

0.6

0.9

0.
1 0.1

(c)
0.02 −0.02

0.1 −0.1

0.2 −0.2

0.05
−0.05

Fig. 3. Contour plots for uniform bottom heating, hðX;0Þ ¼ 1, with Pr ¼ 7:2 (salt water), Ra ¼ 106 and Da ¼ 10�5 for (a) u ¼ 45� , (b) u ¼ 30� and (c) u ¼ 0� . Clockwise and
anti-clockwise flows are shown via negative and positive signs of stream function, respectively.

0.5

0.7
0.9

0.
40.2

0.3

0.
1

(a) TEMPERATURE, θ

0.34 −0.34
−0.25

0.05 0.15

−0.15

−0.05

0.2
5

STREAM FUNCTION, ψ

0.4

0.6
0.8

0.
3

0.1

0.3 0.
1

(b)

0.32

0.14 −0.14

−0.32

0.25
−0.25

−0.050.05

0.2

0.4

0.6
0.8

0.
1

0.1

(c)

0.6

0.4
0.2 −0.2

−0.5

−0
.6

0.1

0.5

−0.4

−0.1

Fig. 4. Contour plots for uniform bottom heating, hðX;0Þ ¼ 1, with Pr ¼ 7:2 (salt water) and Da ¼ 10�3 for (a) u ¼ 45�; Ra ¼ 104, (b) u ¼ 30�; Ra ¼ 104 and (c)
u ¼ 0�; Ra ¼ 3� 104. Clockwise and anti-clockwise flows are shown via negative and positive signs of stream function, respectively.

4616 T. Basak et al. / International Journal of Heat and Mass Transfer 52 (2009) 4612–4623
enclosure (Fig. 3b) whereas h P 0:4 are smooth curves symmetric
with respect to vertical symmetric line. For square cavity
ðu ¼ 0�Þ; h ¼ 0:1 is symmetric along the side walls and h P 0:2
are smooth curves symmetric with respect to the central symmet-
ric line (Fig. 3c). Increase in the intensity of circulations and larger
temperature gradient are observed with increase in u from 0� to
45�.
During conduction dominant heat transfer, the temperature
profiles are almost invariant with respect to Ra and it is observed
that the significant convection is initiated corresponding to a crit-
ical Ra. The critical Rayleigh number for the conduction dominant
mode is found as Ra ¼ 104 for u ¼ 45�;30� and Ra ¼ 3� 104 for
u ¼ 0� with Da ¼ 10�3 and Pr ¼ 7:2. At critical Ra, the distortion
of the isotherm gradually increases and convection becomes
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dominant mode of heat transfer as seen in Fig. 4a–c. At the onset of
convection, the isotherms gradually get distorted and move to-
wards the walls. The value of critical Ra has been obtained from
asymptotes of average Nusselt number vs Rayleigh number plot
as discussed later.
It is observed that the flow is strongly dependent on Ra for
Da ¼ 10�3. For Da ¼ 10�3;Ra ¼ 106 and Pr ¼ 7:2, the circulation
near the central regimes are stronger and consequently, the tem-
perature contours with h 6 0:5 irrespective of u’s start getting
shifted towards the side walls and they break into two symmetric
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contour lines (see Fig. 5). The presence of significant convection is
also exhibited in isotherms which start getting deformed and
pushed towards the side walls. The intensity of flow circulations
for Da ¼ 10�3 is represented with jwjmax ¼ 14 irrespective of u’s
and the intensity is significantly greater than that at Da ¼ 10�5

which corresponds to jwjmax ¼ 0:34 for u ¼ 45�; jwmaxj ¼ 0:32 for
u ¼ 30� and jwmaxj ¼ 0:2 for u ¼ 0�. The greater circulation in each
half of the box follows a progressive wrapping around the centers
of rotation, and a more pronounced compression of isotherms to-
wards the boundary surfaces of the enclosures occur. Conse-
quently, the formation of thermal boundary layers is observed at
the side walls as well as at the bottom wall whereas small temper-
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ature gradients are present from the central core towards the top
half of the cavity.

Comparative study for two limits of Prandtl numbers is shown
in Figs. 6 and 7. At Ra ¼ 106 for Pr ¼ 0:026 and Da ¼ 10�3

(Fig. 6), the isotherm contours are less compressed towards the
side and bottom walls forming weaker temperature gradient with-
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Fig. 9. Contour plots for non-uniform bottom heating, hðX;0Þ ¼ sinðpXÞ, with Pr ¼ 7:2
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Fig. 10. Contour plots for non-uniform bottom heating, hðX; 0Þ ¼ sinðpXÞ, with Pr ¼ 0:026
Clockwise and anti-clockwise flows are shown via negative and positive signs of stream
in the thermal boundary layer. Hence, the thicknesses of the ther-
mal boundary layers are greater for Pr ¼ 0:026 as compared to
Pr ¼ 7:2. For Pr ¼ 988:24 at Ra ¼ 106 (Fig. 7), temperature contours
along the walls are highly compressed and thickness of the thermal
boundary layer is reduced. The intensity of flow circulations for
Pr ¼ 988:24 is represented with jwjmax ¼ 15 whereas it is observed
12
10

6
2 −2

−6

−10
−12

STREAM FUNCTION, ψ

12
10

6
2 −2

−6

−10
−12

12
10

86
2 −2

−6−8
−10
−12

(salt water), Ra ¼ 106 and Da ¼ 10�3 for (a) u ¼ 45� , (b) u ¼ 30� and (c) u ¼ 0� .
function, respectively.

9.5 −9.5

−99

7

4 −7 −42
−2

STREAM FUNCTION, ψ

9.5 −9.5
72

−2−7

−99
4 −4

109
−10

−9−774

−4

2 −2

(molten metal), Ra ¼ 106 and Da ¼ 10�3 for (a) u ¼ 45� , (b) u ¼ 30� and (c) u ¼ 0� .
function, respectively.



0.2 0.4 0.6 0.8
Distance

0

5

10

15

20

L
oc

al
 N

us
se

lt 
N

um
be

r,
N

u b
 

L
oc

al
 N

us
se

lt 
N

um
be

r,
N

u s
 

ϕ=45°

Bottom Wall(a)

ϕ=0°

ϕ=30°

0.1 0.2 0.3
 

8

12

16

20

 

ϕ=45°
ϕ=30°

ϕ=0°

0.1 0.2 0.3
 

8

12

 ϕ=0°

ϕ=30°, ϕ=45°

0.2 0.4 0.6 0.8 1 1.2 1.4
Distance

0

4

8

12

16

20

ϕ=0°

Side Wall(b)

ϕ=45°ϕ=30°

0.2 0.4 0.6
0

2

4

6

 

ϕ=0°

ϕ=45°ϕ=30°

0.2 0.4 0.6
 

0

2

4

6

 

ϕ=0° ϕ=45°

ϕ=30°

Fig. 12. Variation of local Nusselt number with distance involving Pr ¼ 7:2 (salt
water), Da ¼ 10�3 and Ra ¼ 106 for (a) the bottom wall, (b) the side wall in presence
of uniform heating (—) and non-uniform heating (- - -) cases. Inset plots show heat
transfer rates for selected regimes with uniform heating (—) and non-uniform
heating (- - -).

4620 T. Basak et al. / International Journal of Heat and Mass Transfer 52 (2009) 4612–4623
that jwjmax ¼ 11 for Pr ¼ 0:026 and jwjmax ¼ 14 for Pr ¼ 7:2 for all
tilt angles. These values further illustrate higher intensity of con-
vection with higher Prandtl numbers. It may also be remarked that
the larger intensity of circulations for higher Pr fluid causes the
shapes of stream functions almost trapezoidal near the walls and
that signifies enhanced mixing effects.

4.3. Effects of Darcy number: non-uniform heating at bottom wall

Figs. 8–11 show the effects for Ra ¼ 103—106;Da ¼ 10�5—10�3

and Pr ¼ 0:026—988:24 when the bottom wall is non-uniformly
heated following sinusoidal variation. As seen in Figs. 3–7, uniform
heating of bottom wall causes a finite discontinuity in Dirichlet
type boundary conditions for the temperature distribution at both
edges of the bottom wall. In contrast, the non-uniform heating re-
moves the singularity at the edges of bottom wall and provides a
smooth temperature distribution in the entire cavity. For
Da ¼ 10�5;Ra ¼ 106 and Pr ¼ 7:2, the isotherms (figure not shown)
are similar to that with uniform heating case as seen in Fig. 3 and
hence the heat transfer is primarily due to conduction. It may be
noted that the temperature at the bottom wall is non-uniform
and the maximum in temperature occurs at the center. Thus, heat
transfer rate is maximum at the center and the detailed analysis is
illustrated in the following section.

During conduction dominant mode ðRa ¼ 103Þ for Pr ¼ 7:2 and
Da ¼ 10�3 with u ¼ 45�, the temperature contours with
h ¼ 0:1—0:2 occur symmetrically near the side walls of the enclo-
sure as seen in Fig. 8a whereas the contours with h 6 0:3 was found
to occur symmetrically near the side walls for uniform heating case
(figure not shown). Similarly for u ¼ 30�, temperature contours
with h ¼ 0:1� 0:2 occur symmetrically near the side walls of the
enclosure (Fig. 8b). In contrast, for u ¼ 0�, temperature contours
are smooth curves symmetric with respect to the vertical symmet-
ric line (Fig. 8c). It is observed that the significant convection for
Pr ¼ 7:2 and Da ¼ 10�3, is initiated at critical Ra ¼ 2� 104 for
u ¼ 45� and 30� and Ra ¼ 3� 104 for u ¼ 0� (figure not shown).
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Similar to uniform heating, streamlines show stronger convection
for u ¼ 45� than that with u ¼ 30� and 0�. However, the strength
of convection is less than that of uniform heating case.

At Ra ¼ 106;Da ¼ 10�3 and Pr ¼ 7:2, isotherms are compressed
towards the side walls. The isotherms with h 6 0:4 occur symmet-
rically near the side walls (Fig. 9). The isotherms are highly com-
pressed near the bottom wall for all u’s (Fig. 9a–c). It is observed
that jwjmax ¼ 12 for all tilt angles which is greater than that at
Da ¼ 10�5.

Comparative study for two limits of Prandtl numbers
(Pr ¼ 0:026 and Pr ¼ 988:24) is shown in Figs. 10 and 11. Similar
to uniform heating case, the stronger effect on convection occurs
for Pr ¼ 988:24. The boundary layer thickness is much reduced
for Pr ¼ 988:24 compared to Pr ¼ 0:026. However, temperature
gradient within the boundary layer is less compared with uniform
heating. It may be noted that h ¼ 0:1—0:5 are confined within the
boundary layer for uniform heating case whereas h ¼ 0:1—0:4 are
confined within the boundary layer for non-uniform heating case
for Pr ¼ 988:24 with all tilt angles. It may also be noticed that
the strength of convection is less in non-uniform heating case. It
may be noted that for all tilt angles, jwjmax ¼ 15 uniform heating
case (Fig. 7) whereas jwjmax ¼ 13 non-uniform case (Fig. 11). The
streamlines are almost trapezoidal near the walls for high
PrðPr ¼ 988:24Þ which was also observed even for uniform heating
case.
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4.4. Heat transfer rates: local and average Nusselt numbers

Fig. 12 shows the effects of tilt angles ðuÞ, for salt water
ðPr ¼ 7:2Þ on the local heat transfer rates or Nusselt numbers at
the bottom and side walls ðNub;NusÞ. Fig. 12a illustrates local Nus-
selt number distribution at the bottom wall ðNubÞ for Ra ¼ 106 and
Da ¼ 10�3. As a result of symmetry in the temperature field, heat
transfer at the bottom wall is symmetric with respect to the
mid-length ðX ¼ 1=2Þ. Common to all cases ðu ¼ 0—45�Þ with uni-
form heating, the temperature contours are widely dispersed at the
center of the bottom wall and therefore local Nusselt number has a
minimum at X ¼ 1=2 for all u’s. The left inset plot within a distance
0:1—0:3 along the bottom wall shows that heat transfer rate is
higher for u ¼ 0� than that for u ¼ 45� and u ¼ 30� with uniform
heating.

The non-uniform heating provides a sinusoidal type of local
heat transfer rate symmetric with respect to mid-length X ¼ 1=2
and shows also a minimum value of Nub at X ¼ 1=2 and edges.
Two maxima in Nub is obtained at X ¼ 0:4 and 0.6. This is due to
fact that the circulations locally compress the isotherms at
X ¼ 0:4 and X ¼ 0:6 due to non-uniform heating. It may be noted
that, the local Nusselt numbers are found to be almost identical
irrespective of u’s. The right inset plot illustrates Nub distributions
for non-uniform heating. The increasing trend of Nub is observed
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ter) and Da ¼ 10�3 for uniform heating (a) and (b) and non-uniform heating (c) and



Table 1
Correlations for average Nusselt number for Pr ¼ 7:2 and Da ¼ 10�3.

u Nub Nus

Uniform heating Non-uniform heating Uniform heating Non-uniform heating

45� 0:2885Ra0:2592 0:0437Ra0:3746 0:1079Ra0:2603 0:0181Ra0:3648

30� 0:4469Ra0:2292 0:0591Ra0:3533 0:1932Ra0:2319 0:0263Ra0:3521

0� 1:0006Ra0:1746 0:1112Ra0:3073 0:5065Ra0:1727 0:0574Ra0:3032
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irrespective of u and Nub at u ¼ 0� is slightly larger within
0:1 6 X 6 0:3.

Heat transfer rates for uniform and non-uniform heating at the
side walls are shown in Fig. 12b. At the bottom corner points, Nus is
larger due to discontinuity in temperature for uniform heating case
whereas due to dispersed isotherms or lower thermal gradients,
the heat transfer rate for non-uniform case is lower than that for
uniform heating case irrespective of Pr;Da and u. At Ra ¼ 106

and Da ¼ 10�3, the heat transfer rates for u ¼ 0� are larger except
at the bottom corner points due to uniform heating as can be ob-
served from the inset plot. It may be noted that, Nus increases with
the vertical distance except near the top corner point for all u. The
larger thickness of the boundary layer at the top corner point leads
to smaller Nus. The qualitative trend of Nus for non-uniform heat-
ing is similar to that with uniform heating.

The local heat transfer rates were also computed for olive oil
ðPr ¼ 988:24Þ and the qualitative trends obtained are similar to
those for salt water ðPr ¼ 7:2Þ.

4.5. Overall heat transfer rate and average Nusselt numbers

The overall heat transfer rates for the sample fluid (salt water:
Pr ¼ 7:2) with various angles are displayed in Fig. 13a–d, where
the distributions of the average Nusselt number of bottom and side
walls, are plotted vs the logarithmic Rayleigh number. The average
Nusselt numbers are obtained using Eqs. (14)–(16) where the inte-
gral is evaluated using Simpson’s 1/3 rule. Fig. 13a and b illustrates
uniform heating cases and Fig. 13c and d illustrates non-uniform
heating cases. The average Nusselt numbers are found to be higher
for u ¼ 0� than that for u ¼ 45�;30� along the bottom and side
walls of the enclosure. The average Nusselt numbers for non-uni-
formly heated bottom wall (Fig. 13c and d) are very close for
u ¼ 45�;30�;0� and the effect of the angle u has less significance.
The values of the average Nusselt numbers along the side walls
are less compared to the bottom wall irrespective of the tilt angle
u. This is due to the fact that the length of the bottom hot wall is
lower than the length of side or cold walls and also based on over-
all heat balance; Nub � lb ¼ 2Nusls, where lb= length of the bottom
wall and ls= length of the side walls.

The average Nusselt numbers show that the overall heat trans-
fer rate decreases with increase in angle for most of the cases. It
may also be noted that average Nusselt number increases with
Ra for convection dominated heat transfer. The conduction domi-
nant regime is shown as asymptotes in Fig. 13. The correlations
for Nusselt number as function of Rayleigh number within convec-
tion dominated regime for various angles u ¼ 45�;30� and 0� are
shown in Table 1. It may be noted that the convection dominant
heat transfer is observed at high Darcy number ðDa ¼ 10�3Þ
whereas average Nusselt numbers do not vary significantly with
Ra for lower Darcy number ðDa ¼ 10�5Þ irrespective of Ra.

5. Conclusion

Role of uniform and non-uniform heating of the bottom wall
and heat transfer characteristics due to natural convection flow
in the porous trapezoidal enclosure has been studied. The penalty
finite element method has been used and smooth solutions are
obtained in terms of stream function and isotherm contours for
wide ranges of Pr;Ra and Da. Numerical simulations were per-
formed for molten metal ðPr ¼ 0:026Þ, salt water ðPr ¼ 7:2Þ and
olive oil ðPr ¼ 988:24Þ with various values of Rayleigh numbers
and Darcy numbers in the range 103

6 Ra 6 106 and 10�5
6

Da 6 10�3 including side wall inclination angle u ¼ 45�;30� and
0� (square). At low Da, the heat transfer is mostly due to conduc-
tion irrespective of Ra and Pr. As Darcy number increases, the iso-
therms are highly compressed near the bottom and side walls for
Ra ¼ 106. The intensity of circulation also increases as Darcy
number increases. Increase in the intensity of circulations and lar-
ger temperature gradients are observed with increase in u from
0� to 45� especially at larger Pr and Ra. However, the strength
of convection is lower for the non-uniform heating case as com-
pared to uniform heating. It may also be remarked that the larger
intensity of circulations for higher Pr fluid (olive oil) causes the
shapes of stream functions to be almost trapezoidal near the
walls and this signifies enhanced mixing effects.

The heat transfer effects are analyzed with local and average
Nusselt numbers. It may be noted that, Nub for u ¼ 45� and
u ¼ 30� are found to be identical whereas they are slightly larger
for u ¼ 0� at Ra ¼ 106 except near the corner points for uniform
heating. It may be observed that Nub is larger at 0:25 6 X 6 0:75
irrespective of u’s for non-uniform heating. On the other hand,
Nus is largest for u ¼ 0� throughout the wall except the bottom
corner point for uniform heating. Due to dispersed temperature
contours or lower thermal gradients, the heat transfer rate for
non-uniform heating is lower than that for uniform heating irre-
spective of Pr;Da and u. However, Nus for non-uniform heating fol-
lows similar qualitative trends to that for uniform heating. It may
be observed that the average Nusselt numbers are higher for
u ¼ 0� compared to u ¼ 45�;30� along the bottom and side walls
of the enclosure. The average Nusselt number for bottom wall dur-
ing non-uniform heating is almost invariant with respect to u for
higher Ra. The values of the average Nusselt numbers along the
side walls are less compared to the bottom wall irrespective of
the tilt angle u. Finally, the correlations between average Nusselt
number and Rayleigh numbers are presented for the convection
dominant regime.
Appendix A

The name ‘iso-parametric’ derives from the fact that the same
parametric function describing the geometry may be used for
interpolating spatial variable within an element. Fig. 2 shows a
trapezoidal domain mapping to a square domain. The transforma-
tion between ðx; yÞ and ðn;gÞ coordinates may be defined via fol-
lowing relationship:

X ¼
X9

k¼1

Ukðn;gÞxk and Y ¼
X9

k¼1

Ukðn;gÞyk

where ðxk; ykÞ are the X;Y coordinates of the k nodal points as seen
in Fig. 2a and b and Ukðn;gÞ is the basis function. The nine basis
functions are:



T. Basak et al. / International Journal of Heat and Mass Transfer 52 (2009) 4612–4623 4623
U1 ¼ ð1� 3nþ 2n2Þð1� 3gþ 2g2Þ
U2 ¼ ð1� 3nþ 2n2Þð4g� 4g2Þ
U3 ¼ ð1� 3nþ 2n2Þð�gþ 2g2Þ
U4 ¼ ð4n� 4n2Þð1� 3gþ 2g2Þ
U5 ¼ ð4n� 4n2Þð4g� 4g2Þ
U6 ¼ ð4n� 4n2Þð�gþ 2g2Þ
U7 ¼ ð�nþ 2n2Þð1� 3gþ 2g2Þ
U8 ¼ ð�nþ 2n2Þð4g� 4g2Þ
U9 ¼ ð�nþ 2n2Þð�gþ 2g2Þ

The above basis functions are used for mapping the trapezoidal do-
main into square domain and the evaluation of integrals of
residuals.
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